COMUNE DI COLONNA

CITTA' METROPOLITANA DI ROMA CAPITALE

MANUTENZIONE STRAORDINARIA EDIFICI ANNESSI E SISTEMAZIONE AREE ESTERNE ISTITUTO SCOLASTICO

(Decreto Interministeriale n.47 del 03/01/2018)

PROGETTO ESECUTIVO

LIVELLO DI PROGETTAZIONE:	NOME	FILE:	REVISIONE	DATA	SOSTITUISCE
PROGETTO ESECUTIVO	ALL.S		rev.00	10/08/2021	/
COMMESSA	E 1655				
Dott. Ing. Catia Bianchi					
PROGETTO STRU				:	ALL.S.07
COMMITTENTE			PROGETTAZION	NE E OPERE	DI INGEGNERIA
Comune di Colonna					
		1			

Il presente progetto rimane di esclusiva proprietà del progettista a cui restano i diritti d'autore conformemente alle vigenti leggi. E' vietata la riproduzione e divulgazione senza autorizzazione scritta del progettista che si riverva di perseguire legalmente i trasgressori.

COMUNE DI COLONNA

Città metropolitana di Roma Capitale

PROGETTO:

MANUTENZIONE STRAORDINARIA EDIFICI ANNESSI E SISTEMAZIONE AREEESTERNE ISTITUTO SCOLASTICO (SCUOLA ELEMENTARE/MATERNA)

OGGETTO:

RELAZIONE SUI MATERIALI E RAPPORTI DI PROVA

COMMITTENTE:

COMUNE DI COLONNA

IMPRESA COSTRUTTRICE:

PROGETTISTA DELLE STRUTTURE:

ING. CATIA BIANCHI

MATERIALI IMPIEGATI (PARAGRAFO II.2 N.T.C. 2008)

- CALCESTRUZZO:

Esistente:

- f_{ck} = 10.5 MPa (resistenza caratteristica cilindrica a compressione).

Il valore su riportato è riferito al provino con peggiori caratteristiche.

Si allegano le prove sui materiali effettuate in data 25/08/2017

Per i nuovi elementi si utilizzerà:

- f_{ck} = 25 MPa (resistenza caratteristica cilindrica a compressione)

$$-f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c} = \frac{0.85 \cdot 25}{1.5} = 14.16 MPa$$
 (resistenza di calcolo a compressione del cls)

-
$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} = 1,19$$
 MPa (resistenza di calcolo a trazione del cls)

- $\epsilon_{cu}\!\!=3,5~^{\rm o}\!/_{\!\rm oo}$ (deformazione massima del calcestruzzo)

$$f_{ctm} = 0.3 \cdot \sqrt[3]{f_{ck}^2} = 2.56MPa$$
 (resistenza media a trazione semplice)

$$f_{ctk} = 0.7 \cdot f_{ctm} = 1.79 MPa$$
 (resistenza caratteristica a trazione del cls)

$$f_{bd} = \frac{f_{bk}}{\gamma_c} = \frac{f_{bk}}{1.6} = 2.52 MPa$$
 (tensione di calcolo di aderenza tangenziale del cls)

 $f_{bk} = 2,25 \cdot \eta \cdot f_{ctk} = 4,03 MPa$ (resistenza caratteristica di aderenza tangenziale del cls)

<u>Per le opere armate</u> verrà impiegato calcestruzzo preconfezionato con dosaggio non inferiore a 350 Kg di cemento Portland tipo 425 per mc di impasto, e sempre sufficiente per assicurare una resistenza caratteristica (R'ck) non inferiore ai 300 Kg/cmq.

Gli inerti saranno presenti nella proporzione di mc 0,400 di sabbia e di mc 0,800 di pietrisco di idonea granulometria al fine di assicurare la resistenza voluta di 300 Kg/cmq, senza mai superare il rapporto acqua/cemento pari a 0,50, con un contenuto di acqua di impasto variabile tra 120 e 150 Litri/mc.

L'acqua di impasto sarà di tipo naturale sufficientemente pura, con esclusione categorica di acque marine o salmastre.

ACCIAIO CLASSE B450C (SECONDO NTCI8 II.3.2.1):

Esistente:

- f_{yk} =351 MPa (tensione caratteristica di snervamento dell'acciaio)

Il valore su riportato è riferito al provino con peggiori caratteristiche.

Per i nuovi elementi si utilizzerà:

- f_{yk} =450 MPa (tensione caratteristica di snervamento dell'acciaio)

-
$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 450/1.15 = 391$$
 MPa (resistenza di calcolo dell'acciaio)

- E_s = 210.000 MPa (modulo di rigidezza dell'acciaio)

- ε_{yd} = f_y/E =391/210.000 = 1,9 o /_{oo} (deformazione di snervamento)

ACCIAIO DA CARPENTERIA S275

Secondo le norme europee l'acciaio è denominato una sigla che ne riassume le caratteristiche principali; ad esempio

dove:

EN 10025-2 è la normativa europea di riferimento

S è il simbolo dell'acciaio strutturale

275 è la tensione di snervamento espressa in

J2 è la sigla per la resilienza con intaglio

Z25 indica richieste particolari (25% riduzione dell'area)

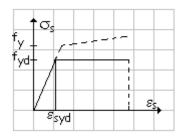
M indica le condizioni di trattamento (laminazione termomeccanica).

Resistenza meccanica.

Le resistenze meccaniche (la tensione ultima a rottura fu e la tensione di snervamento fy):

- aumentano con il tenore di carbonio;
- diminuiscono con il crescere dello spessore t delle membrature

Acciai laminati					
Norma e tipo di	Spessore nominale della membratura				
acciaio	† ≤ 40 mm		40 mm < † ≤ 80 mm		
EN 10025-2	f_y [N/mm ²]	$f_u [N/mm^2]$	f_y [N/mm ²]	f_u [N/mm ²]	
S 275	275	430	255	410	


Resistenza di calcolo.

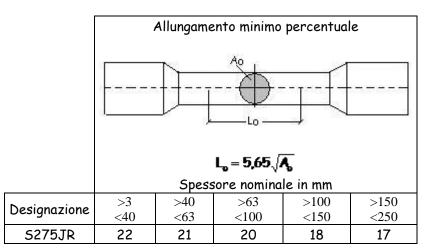
La resistenza di calcolo fyd si determina con l'espressione

$$f_{y_d} = \frac{f_y}{y_d}$$

ad essa corrisponde la deformazione limite elastica esyd il cui valore si può calcolare mediante

l'espressione
$$\mathbf{z}_{\mathbf{q}} = \frac{\mathbf{f}_{\mathbf{q}}}{\mathbf{E}}$$

Il coefficiente di sicurezza gM0 è stabilito dagli annessi nazionali. I valori per l'Italia sono in via di approvazione.


Coefficiente	Campo di impiego	Secondo EC3	Proposta annesso nazionale
	Resistenza delle sezioni		nazionale
γмо	trasversale per tutte le classi	•	
γ м 1	Resistenza delle membrature all'instabilità	1,00	1,05
γ м 2	Resistenza delle sezioni trasversali in tensione per frattura	1,25	1,25

	Valori di fyd		
	f _y 275		
	Esyd %	0,13	
γмо	1,05	261,90	
γм1	1,05	261,90	
γм2	1,25	220,00	

Duttilità.

Gli allungamenti minimi percentuali:

- diminuiscono con l'aumento del tenore di carbonio;
- diminuiscono con il crescere dello spessore t delle membrature

